📂
build a OS
  • Learn OS with me
  • OS Interfaces
    • OS interfaces
    • I/O and File descriptors
    • Process and Memory
    • Pipes
    • File
  • OS Organization
    • OS Organization
    • Challenge yourself
  • Memory Management
    • XV6 Virtual Memory
    • Page Table
      • Part 1: How to translate address
      • Part 2: Create an Address Space
      • Part 3: How Page Table is used
      • Part 4: Page Fault and Swap
      • Part 5: How to operate on page tables
    • xv6 buddy allocator
      • How to display physical memory
    • Memory Management Walk Through
  • Traps and Interrupts
    • Trap Home Page
      • 系统调用的核心原理
    • What is trapframe
    • What is trampoline
    • Traps from kernel space
    • How fork() works
    • How system calls get into/out of the kernel
    • How exec() works
  • Scheduling
    • XV6 CPU Scheduling
    • How unix pipes work?
    • How does wait(), exit(), kill() work?
  • File System
    • Overview and Disk Layout
    • Buffer Cache
    • Design Inode Layer
    • Inode Content
    • Block Allocator
    • Design a log system for crash recovery
    • Directory Layer
    • Path names
    • File Descriptor Layer
    • FS System Calls
    • XV6 VS Real World
    • Make Xv6 File disk management system
    • Write FS simulator in python
    • How Redirect Shell command works
  • Concurrency
    • Spinlock
    • How linux select work
    • Hardware Support Locking
    • Exercise: Implement atomic counter
    • Locking in Xv6
    • Concurrency in Xv6
    • Exercise: Socket Programming with Event loop
  • Labs
    • Lab 1 Xv6 and Unix utilities
    • Lab 2 Shell
    • Lab 3 Buddy Allocator
    • Lab 4 Lazy
    • Lab 5 Copy-on-Write Fork for xv6
    • Lab 6 RISC-V assembly
    • Lab 6 Uthread: switching between threads
    • Lab 6 Alarm
    • Lab 7 Lock
    • Lab 8 File System: Large Files
    • Lab 8 File System: Symbolic links
    • Lab 9 mmap
    • Lab 10 Networking Part 1
    • Lab 10 Networking Part 2
  • Hardware, Device, Assembly
    • RISC-V assembly
    • Assembly: Access and Store information in Memory
    • Start xv6 and the first process
    • Why first user process loads another program?
    • What does kernel.ld do in XV6?
    • XV6 Device Driver
Powered by GitBook
On this page
  • Overview
  • Role

Was this helpful?

  1. File System

Buffer Cache

Overview

The buffer cache is a linked list of buf structures holding cached copies of disk block contents.

Caching disk blocks in memory reduces the number of disk reads and also provides a synchronization point for disk blocks used by multiple processes.

Role

1. Sync access to disk blocks to ensure only one copy of a block in memory and only one kernel thread can use this copy.

2. Cache popular blocks See bio.c

Source code

struct buf {
  int valid;   // has data been read from disk?
  int disk;    // does disk “own” buf?
  uint dev;
  uint blockno;
  struct sleeplock lock;
  uint refcnt;
  struct buf *prev; // LRU cache list
  struct buf *next;
  uchar data[BSIZE];
};
struct {
  struct spinlock lock;
  struct buf buf[NBUF];

  // Linked list of all buffers, through prev/next.
  // head.next is most recently used.
  struct buf head;
} bcache;
buffer cache impl.
struct {
  struct spinlock lock;
  struct buf buf[NBUF];

  // Linked list of all buffers, through prev/next.
  // head.next is most recently used.
  struct buf head;
} bcache;

void
binit(void)
{
  struct buf *b;

  initlock(&bcache.lock, "bcache");

  // Create linked list of buffers
  bcache.head.prev = &bcache.head;
  bcache.head.next = &bcache.head;
  for(b = bcache.buf; b < bcache.buf+NBUF; b++){
    b->next = bcache.head.next;
    b->prev = &bcache.head;
    initsleeplock(&b->lock, "buffer");
    bcache.head.next->prev = b;
    bcache.head.next = b;
  }
}

// Look through buffer cache for block on device dev.
// If not found, allocate a buffer.
// In either case, return locked buffer.
static struct buf*
bget(uint dev, uint blockno)
{
  struct buf *b;

  acquire(&bcache.lock);

  // Is the block already cached?
  for(b = bcache.head.next; b != &bcache.head; b = b->next){
    if(b->dev == dev && b->blockno == blockno){
      b->refcnt++;
      release(&bcache.lock);
      acquiresleep(&b->lock);
      return b;
    }
  }

  // Not cached; recycle an unused buffer.
  for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
    if(b->refcnt == 0) {
      b->dev = dev;
      b->blockno = blockno;
      b->valid = 0;
      b->refcnt = 1;
      release(&bcache.lock);
      acquiresleep(&b->lock);
      return b;
    }
  }
  panic("bget: no buffers");
}

// Return a locked buf with the contents of the indicated block.
struct buf*
bread(uint dev, uint blockno)
{
  struct buf *b;

  b = bget(dev, blockno);
  if(!b->valid) {
    virtio_disk_rw(b->dev, b, 0);
    b->valid = 1;
  }
  return b;
}

// Write b's contents to disk.  Must be locked.
void
bwrite(struct buf *b)
{
  if(!holdingsleep(&b->lock))
    panic("bwrite");
  virtio_disk_rw(b->dev, b, 1);
}

// Release a locked buffer.
// Move to the head of the MRU list.
void
brelse(struct buf *b)
{
  if(!holdingsleep(&b->lock))
    panic("brelse");

  releasesleep(&b->lock);

  acquire(&bcache.lock);
  b->refcnt--;
  if (b->refcnt == 0) {
    // no one is waiting for it.
    b->next->prev = b->prev;
    b->prev->next = b->next;
    b->next = bcache.head.next;
    b->prev = &bcache.head;
    bcache.head.next->prev = b;
    bcache.head.next = b;
  }
  
  release(&bcache.lock);
}

void
bpin(struct buf *b) {
  acquire(&bcache.lock);
  b->refcnt++;
  release(&bcache.lock);
}

void
bunpin(struct buf *b) {
  acquire(&bcache.lock);
  b->refcnt--;
  release(&bcache.lock);
}
PreviousOverview and Disk LayoutNextDesign Inode Layer

Last updated 5 years ago

Was this helpful?