📂
build a OS
  • Learn OS with me
  • OS Interfaces
    • OS interfaces
    • I/O and File descriptors
    • Process and Memory
    • Pipes
    • File
  • OS Organization
    • OS Organization
    • Challenge yourself
  • Memory Management
    • XV6 Virtual Memory
    • Page Table
      • Part 1: How to translate address
      • Part 2: Create an Address Space
      • Part 3: How Page Table is used
      • Part 4: Page Fault and Swap
      • Part 5: How to operate on page tables
    • xv6 buddy allocator
      • How to display physical memory
    • Memory Management Walk Through
  • Traps and Interrupts
    • Trap Home Page
      • 系统调用的核心原理
    • What is trapframe
    • What is trampoline
    • Traps from kernel space
    • How fork() works
    • How system calls get into/out of the kernel
    • How exec() works
  • Scheduling
    • XV6 CPU Scheduling
    • How unix pipes work?
    • How does wait(), exit(), kill() work?
  • File System
    • Overview and Disk Layout
    • Buffer Cache
    • Design Inode Layer
    • Inode Content
    • Block Allocator
    • Design a log system for crash recovery
    • Directory Layer
    • Path names
    • File Descriptor Layer
    • FS System Calls
    • XV6 VS Real World
    • Make Xv6 File disk management system
    • Write FS simulator in python
    • How Redirect Shell command works
  • Concurrency
    • Spinlock
    • How linux select work
    • Hardware Support Locking
    • Exercise: Implement atomic counter
    • Locking in Xv6
    • Concurrency in Xv6
    • Exercise: Socket Programming with Event loop
  • Labs
    • Lab 1 Xv6 and Unix utilities
    • Lab 2 Shell
    • Lab 3 Buddy Allocator
    • Lab 4 Lazy
    • Lab 5 Copy-on-Write Fork for xv6
    • Lab 6 RISC-V assembly
    • Lab 6 Uthread: switching between threads
    • Lab 6 Alarm
    • Lab 7 Lock
    • Lab 8 File System: Large Files
    • Lab 8 File System: Symbolic links
    • Lab 9 mmap
    • Lab 10 Networking Part 1
    • Lab 10 Networking Part 2
  • Hardware, Device, Assembly
    • RISC-V assembly
    • Assembly: Access and Store information in Memory
    • Start xv6 and the first process
    • Why first user process loads another program?
    • What does kernel.ld do in XV6?
    • XV6 Device Driver
Powered by GitBook
On this page

Was this helpful?

  1. OS Interfaces

OS interfaces

PreviousLearn OS with meNextI/O and File descriptors

Last updated 5 years ago

Was this helpful?

The job of OS is

  1. Share programs.

  2. Abstract low-level hardware, so program need not concern what disk is being used.

  3. Provide ways for programs to interact.

Design philosophy

OS defines interfaces to be simple and narrow. Combine programs to provide much generality.

User space and Kernel Space

When a process needs to invoke a kernel service, it invokes a system call. The system call enters the kernel, the kernel performs the service and returns.

Privileges

Kernel uses CPU’s hardware protection mechanisms to ensure each process in user space can only access its own memory. When a user program invokes a system call, the hardware raises the privilege level and starts executing a pre-arranged function in kernel.

The shell

The shell is an ordinary program that reads commands from the user and executes them. In our journey, we will be implement a new shell ourself (see lab2).

Xv6 system calls