📂
build a OS
  • Learn OS with me
  • OS Interfaces
    • OS interfaces
    • I/O and File descriptors
    • Process and Memory
    • Pipes
    • File
  • OS Organization
    • OS Organization
    • Challenge yourself
  • Memory Management
    • XV6 Virtual Memory
    • Page Table
      • Part 1: How to translate address
      • Part 2: Create an Address Space
      • Part 3: How Page Table is used
      • Part 4: Page Fault and Swap
      • Part 5: How to operate on page tables
    • xv6 buddy allocator
      • How to display physical memory
    • Memory Management Walk Through
  • Traps and Interrupts
    • Trap Home Page
      • 系统调用的核心原理
    • What is trapframe
    • What is trampoline
    • Traps from kernel space
    • How fork() works
    • How system calls get into/out of the kernel
    • How exec() works
  • Scheduling
    • XV6 CPU Scheduling
    • How unix pipes work?
    • How does wait(), exit(), kill() work?
  • File System
    • Overview and Disk Layout
    • Buffer Cache
    • Design Inode Layer
    • Inode Content
    • Block Allocator
    • Design a log system for crash recovery
    • Directory Layer
    • Path names
    • File Descriptor Layer
    • FS System Calls
    • XV6 VS Real World
    • Make Xv6 File disk management system
    • Write FS simulator in python
    • How Redirect Shell command works
  • Concurrency
    • Spinlock
    • How linux select work
    • Hardware Support Locking
    • Exercise: Implement atomic counter
    • Locking in Xv6
    • Concurrency in Xv6
    • Exercise: Socket Programming with Event loop
  • Labs
    • Lab 1 Xv6 and Unix utilities
    • Lab 2 Shell
    • Lab 3 Buddy Allocator
    • Lab 4 Lazy
    • Lab 5 Copy-on-Write Fork for xv6
    • Lab 6 RISC-V assembly
    • Lab 6 Uthread: switching between threads
    • Lab 6 Alarm
    • Lab 7 Lock
    • Lab 8 File System: Large Files
    • Lab 8 File System: Symbolic links
    • Lab 9 mmap
    • Lab 10 Networking Part 1
    • Lab 10 Networking Part 2
  • Hardware, Device, Assembly
    • RISC-V assembly
    • Assembly: Access and Store information in Memory
    • Start xv6 and the first process
    • Why first user process loads another program?
    • What does kernel.ld do in XV6?
    • XV6 Device Driver
Powered by GitBook
On this page

Was this helpful?

  1. Memory Management
  2. Page Table

Part 4: Page Fault and Swap

Page can store in disk, if memory is running out of space. Page Table will have bit indicate page is valid but not present. When reference a not in memory page, the handler will generate a page fault. Memory and disk can swap pages whenever needed.

PreviousPart 3: How Page Table is usedNextPart 5: How to operate on page tables

Last updated 5 years ago

Was this helpful?